eROSITA view of the WHIM emission in cosmic filaments

Xiaoyuan Zhang

on behalf of the eROSITA-DE consortium

xzhang@mpe.mpg.de

Based on Zhang et al. 2024, A&A, 691, A234

NewAthena Science Webinar, 22 April 2025

Funded by the ERC CoG DarkQuest

Large scale structure

- Voids
- Sheets
- Filaments
- Nodes

40% of total mass is in cosmic filaments

Mass and comoving volume evolution (Martizzi+2019)

Mass accretion: Voids & sheets -> filaments + knots

- \sim 30% of the total baryon is missing
- In the T > 10^{5.5} K Warm-Hot Intergalactic medium phase

Table 2. Hot gas $(\log T(K) > 5.5)$ fraction of the total baryon content within the EAGLE simulation.

Component	$\Omega_{b,i}$ / $\Omega_{b,planck}$
Total	42%
Within R_{200}	13%
Hot WHIM ^(a)	29%
Outskirts (b)	5%
Bisous filaments (c)	25%
NEXUS+ filaments (c)	23%

Notes. ^(*a*)"Total" – "Within R_{200} ". ^(*b*)Gas outside R_{200} but within FoF halo. ^(*c*)Outside R_{200} , including outskirts.

Analysis of EAGLE simulation (Tuominen+21) \sim 25% of baryon is

- T > 10^{5.5} K
- Outside r_{200c}
- In cosmic filaments

About this work

eROSITA All-Sky Survey

Cosmic filament catalog

 SDSS BOSS galaxies + DisPerSE method (Malavasi+20)

Questions to be answered in this work

How much of the X-ray background emission is correlated with cosmic filaments?

What is the fraction of the signal from unbound WHIM? What is the physical condition of the X-ray emitting WHIM

Stacking analysis

Halo emission (contamination) modeling

Spectral & profile modeling

Stacking analysis

Filament emission stacking – searching for correlation

Stacking RASS & eFEDS + SDSS filament catalog Signal significance: $\sim 4\sigma$ (Tanimura+20,22)

Malavasi+20 DisPerSE catalog (SDSS-BOSS based)

- 20 < Length (Mpc) < 100
- 0.2< z < 0.6

Length is directly from DisPerSE

- 2300 deg² eRASS:4 X-ray sky (2-year data)
- 3D structure of the 7817 cosmic filaments

Source masking

eRASS:4 detections eRASS1 clusters (Bulbul+24) redMaPPer λ>20 clusters (Kluge+24) Foreground groups (Tinker+21)

0.3-1.2 keV eRASS:4 map

Stacked profile

- Stacking weight: exposure
- Local background subtracted
- Uncertainty: sky pixel bootstrapping
- Control sample: randomized filament positions

2300 deg² 2-year eRASS: **9-** σ significance

Grouped by length

Stacked signal of short filaments is wider than long filaments

In different bands

Transverse distance to spine (Mpc)

Stacking validation

- Filament emission < 1% of Sky background
- Filaments from different redshifts projected at the same position
- Stacking supposes to only recover *correlated* signals

Possible signal boosting

- Case 1: no signal boosting
- Case 2: doubled signal

Stacking validation - mock filament emission map

Based on

- Configurations of the selected filaments
- Injected SB profile

Selected filament emission (< 1% of the total)

Simulated mock fore/background map

Angular power spectrum

Based on the angular power spectrum of the field

Observed map as comparison 18

Recovered profiles

With 200 different simulated background maps

Recovered profile matechs the injected profile with only 13% difference

Contamination modeling

X-ray sources in the Universe

Unbound		WHIM
Bound	Halo	Halo gas (ICM, IGrM, CGM)
	Halo & Subhalo (Galaxies)	Active Galactic Nuclei
		X-ray binaries
		Stars
		Supernova remnants

"Contamination signal"

Galaxy based contamination signal modeling

Galaxy catalog

Legacy Survey photo-z catalog (Zou+19)

- RA, DEC
- Z_{phot}
- M*

Scaling relations

	Scaling relation	Spectral model
Halo gas	Anderson+15	CIE, kT from Bahar+22 Lx-T relation
AGN	Comparat+19,23 Xray mock catalog	Composite AGN model
XRB	Lehmer+19	Self absorbed powerlaw

Model - observation comparison

Additional M_{*} calibration

Scaling relation	M _* adoption
Anderson+15	Blanton+07
Y. Zhang+24 observation	Chen+12
This work	Zou+19

Legacy survey completeness

Stellar mass function ratio Zou+19 / UniverseMachine

 $M_* > 10^{11.2} M_{\odot}$: SMF slope inconsistency, sensitive to M_* measurement

Conservative decision: No further M_{*} correction

 $M_* < 10^{11.2} M_{\odot}$: Observed galaxies are incomplete $F_{paint} = F_{predict} / completeness$

Painted galaxy emission map

Profiles of the three contamination sources

37% of total by this method

Contamination fractions

- 37% of total by this method
- Over half contamination is from X-ray halos (group size)

WHIM properties modeling

Stacked rest-frame spectra

• Approach of blueshift & stack (Bulbul+14)

Components:

- APEC (Z = 0.2 × Z_☉) [Norm, kT]
- Contamination sources [Norm]
 - Halo gas
 - AGN
 - XRB

Best-fit "representative" temperature $0.58 \pm 0.1 \text{ keV}$ (10^{6.8} Kelvin)

0—10 Mpc region with 10—20 Mpc local bkg subtracted

Modeling SB profile -> WHIM density

A few assumptions

- 1. Multiphase nature
 - Volume filling fraction $f_{vol} \equiv \frac{V_{det}}{V_{filament}}$
 - King-profile for both $n(r) \& f_{vol}(r)$
 - However, still assume the `representative` T
- 2. Universal Δ_b profile -> $\rho(z) \propto (1+z)^3$
- 3. Smoothing effects on the observed profile
- 4. Predicted Compton-y < Tanimura+20 stacking results

Multiphase nature

Simulation analysis:

- TNG300-1 z=0.48 snapshot
- DisPerSE filaments constructed using $10^9 M_{\odot} < M_* < 10^{12} M_{\odot}$ galaxies
- Gas particles around filaments within 1 Mpc distance
- Halo bound particles excluded, nodes particles r < 2 Mpc excluded

Smoothing effects

Observed width: 20 Mpc Intrinsic width: a few Mpc

Incomplete galaxy sample for filament catalog construction

- ~10⁻⁴ Mpc⁻³
- Skeleton uncertainty
- Will be significantly improved by DESI

f_{vol} – density degeneracy

- $EM \sim \int f_{\rm vol} n^2 dV$
- $y \sim \int f_{\text{vol}} nT dl$
- y from X-ray emitting gas < y_{tot}
- Our log y term in the likelihood N(-8.3, 0.5)

Planck SZ stacking (Tanimura+19)

Contour: 50% enclosed contribution

Our answers to the three questions

How much of the X-ray background emission is correlated with cosmic filaments?

What is the fraction of positive correlation from unbound WHIM?

What is the physical condition of the X-ray emitting WHIM

- 9*σ*
- ~0.5% of the background
- Depends on survey configurations and source masking
- ~60%
- Uncertainty origin:
 - Scaling relation
 - High mass end of SMF

- $\Delta_b \sim 80$
- $T \sim 6 \times 10^6 \text{ K}$
- X-ray emission from high density and high temperature gas

Scope beyond eROSITA and SDSS filaments

Optical galaxy surveys

- DESI
- 4MOST
- Higher galaxy density Better filament precision & completeness

Scope beyond eROSITA and SDSS filaments

In the high-resolution X-ray spectroscopy era With future DESI & 4MOST filament catalog

X-ray absorption (NewAthena)

- Foreground structure distribution of all bright blazars
- Multi-absorber stacking

X-ray emission (HUBS)

- High density structures for pointing
- Probing photoionized WHIM