Logo

The Athena X-ray Observatory: Community Support Portal

This web portal uses third-party cookies to track visits to the website only, no personal information is collected.

By continuing to use the site you are agreeing to our use of cookies. Learn more

I understand

Use of cookies

This website uses Google Analytics, a web analytics service provided by Google, Inc. (“Google”). Google Analytics uses “cookies”, which are text files placed on your computer, to help the website analyze how users use the site. The information generated by the cookie about your use of the website (including your IP address) will be transmitted to and stored by Google on servers in the United States. The IP address will be truncated before transmission. On our behalf Google will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet activity in connection with the use of the website. Google will not associate your IP address with any other data held by Google.

If you do not wish to receive a cookie, or if you wish your browser to notify you when you receive a cookie, you may use the option on your web browser to disable cookies. Click on the 'help' section of your browser to learn how to change cookie preferences.

SearchingOutflows Abstract: "Ultraluminous X-ray sources are non-nuclear point sources exceeding the Eddington luminosity of a 10 Solar mass black hole. Modern consensus for a majority of the ULX population is that they are powered by stellar-mass black holes or neutron stars accreting well above the Eddington limit. Theoretical models of super-Eddington accretion predict existence of powerful outflows of moderately ionised gas at mildly relativistic velocities. So far, these winds have been found in 3 systems: NGC 1313 X-1, NGC 5408 X-1, NGC 55 ULX. In this work, we create a sample of all ULXs with usable archival high resolution X-ray data, with 10 sources in total, in which we aim to find more signatures of outflows. We perform Gaussian line scans to find any narrow spectral signatures, and physical wind model scans where possible. We tentatively identify an outflow in NGC 5204 X-1, blueshifted to 0.34c, which produces emission features with a total significance of at least 3σ. Next we compare ULXs with similar hardness ratios. Holmberg IX X-1 shows absorption features which could be associated with a photoionized outflowing absorber, similar to that seen in NGC 1313 X-1. The spectrum of Holmberg II X-1 possesses features similar to NGC 5408 X-1 and NGC 6946 X-1 shows O VIII rest-frame emission. All other sources from the sample also show tentative evidence of spectral features in their high resolution spectra. Further observations with the XMM-Newton and Chandra gratings will place stronger constraints. Future missions like XARM and Athena will be able to detect them at larger distances and increase our sample."

Read full document

Papers related with Athena

Your Athena related publications: Please inform us about your Athena related publications. They will posted in our web site and in the Athena social media.

  • 1
  • 2
  • 3
  • 4
  • 5

Overview papers

  • 1

Athena mission proposal and white paper

  • 1

Athena supporting papers

  • 1
  • 2
  • 3